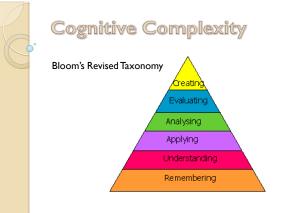

Ramping Up the Critical Thinking in YOUR Classroom!

> July 31 8:15-10:45

Presenter: Dr. Rebecca Stobaugh



Previous principal and teacher

Learning Goals

- Identify various thinking levels and classify assessments used in their class on these levels.
- Design multiple choice and extended response items at top 3 levels of Bloom's taxonomy.
- Design performance assessments at the top 3 levels of Bloom's taxonomy.

Importance of Higher Level Thinking

- To develop students' critical thinking skills necessary for mastering state and national assessments
- Most importantly, to prepare them to survive in the 21st century as problem solvers.
- Problem-solving skills can increase thinking, content area achievement, and motivation (Higgins, et al., 2005).

×٦

C

Remember

Remember Level Cognitive Processe

- I. Recognizin
- 2. Recalling

Remember

Recognizing

- Retrieving relevant knowledge from longterm memory that is identical or
- Example:
 - True or False: The U.S. Constitution was written in 1776.

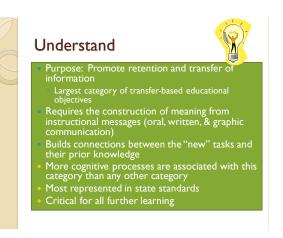
Remember

Recalling

- Retrieving relevant knowledge form longterm memory when given a prompt to do se
 Searches long-term memory for a piece of information and brings that piece of information to working memory where it can be processed (retrieving)
 - Typically a question and looking for the answer.
- Example:
 - Taught major exports of Kentucky.

emembering

- Problem with using these types of questions:
 - Teachers tend to overuse it. Most questions in classroom discussions and tests are in the knowledge category.
 - Much of what is memorized is forgotten.
 - Only assesses a shallow understanding of an area.
 - State standards are not written at this level. They expect higher levels of thinking


(Cooper, 2006)

10

The line of demarcation in the 6 cognitive categories

Remember = rote learning All others = meaningful learning(transfer)

Rote learning requires students to remember what they learned.Transfer requires students to remember but also make sense of what they have learned.

Understand

Understanding level cognitive

processes Interpreting

Exemplifying

Classifying

Summarizing

Inferring Comparing

Explaining

Understand

Interpreting: Convert information from one representation to another

Example: convert words into picture form

Draw pictorial representations

Must be new examples

If task is similar to instruction then it would

Understand

Exemplifying: Giving a specific example of instance of a general concept or principle

Identifying the defining feature of a general concept or principle Selecting or producing a specific example that is not encountered during instruction

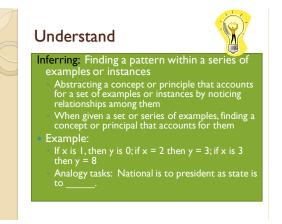
Example:

Taught artistic styles; then ask students to identify the painting represented by that period. Taught about play genres; when given brief sketches of 4 plays, the students can identify which is a romantic comedy

Understand

Classifying: Recognizing that something's belongs to Jassifying: Recognizing that something's belon, a certain category (e.g., concept or principle) Classifying begins with a specific instance or example and requires the student to find a general concept or principal Exemplifying begins with a general concepts and requires students to find a specific instances or examples Example:

Students given pictures of prehistoric animals and then group animals based on common characteristics Sorting task: Students given instances and must determine which ones belong in a specified category and which ones do not


Understand

Summarizing: Suggests a single statement that represents presented information or abstract a general theme

Example:

Write a short summary of a event portrayed pictorially

After reading, write a summary of events Select a title that best fits a passage

C

Understand

Comparing: Detecting similarities and differences between 2 or more objects, events, ideas, problems, or situations

Show how each part of one object, idea, problem or situation corresponds to each part of another

Example:

How is the American Revolution like a family fight?

Compare structurally similar math word problems.

Apply

Using procedures to perform exercises or solve problems Linked with procedural knowledge

Student applies a fairly routine approach to a problem

Apply

Apply Level Cognitive processes:

- I. Executing
- 2. Implementing

Apply

Executing: Routinely carries out a procedures when confronted with a familiar task

Follow a sequence of steps that are generally followed in a fixed order

When performed correctly the end result is a predetermined answer

Example:

Divide two whole numbers

Calculate density when given mass & volume (density = mass/volume)

E

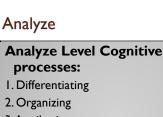
Apply

Implementing: Student selects and uses a procedures to perform an unfamiliar task

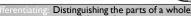
Does not know immediately the available procedures to use There is no single, fixed answer expected

when the procedure is applied correctly

Example:


Determine the procedures need to solve the problem and solve the problem using the selected procedure

Analyze



- Breaking material into its constituent parts and determine how the parts are related to one another and to an overall structure
- Determine relevant or important pieces of a messages
- Ways in which the pieces of a message are organized
- Underlying purpose of the message
- Extension to Understanding or prelude to Evaluating or Creating

3.Attributing

Analyze

- structure in terms of their relevance or importance
- Discriminate relevant from irrelevant information and then attend to relevant or important information
- Example: Differentiating apples and oranges in the context of fruit
- Internal seeds are relevant but color and shape are irrelevant In Comparing all relevant factors considered (i.e., seeds, color, and shape)
- After reading research paper, identify key points
 Identify relevant and irrelevant numbers in a word problem

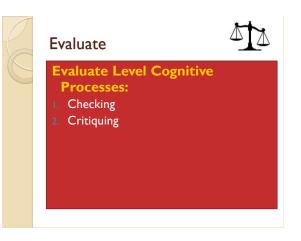
Analyze

- Organizing: Identifying the elements of communication or situation and recognizing how they fit together into a coherent structure Student building systematic and coherent connection among pieces of presenting information
- Occurs in conjunction with differentiating
- Student first identified relevant or important elements and then determines the overall structure within which the element fit

• Examples:

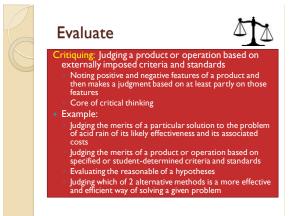
- Create an outline of facts that support or don't support a conclusion that the Civil War was caused by differences in rural and urban composition
- Analyze research reports in term of 4 sections (hypothesis, method, data, and conclusion). As an assessment, asked to produce an outline of presented research report
- In selected response, select which of 4 alternatives graphic hierarchies best corresponds to the organization of a presented passage

Analyze


Attributing: Ascertain the point of view, biases, values, or intentions underlying communication • Deconstruction to determine the intention of the

- author of the presented material
- Extension belong Understanding to infer the intention or point of view underlying the presented material
- Example:
 - After reading passage about the American Civil War, determine whether the author takes the perspective of the North or the South
 - Determine motives for a series of actions by characters
 - Analyze a report to determine if a report on rain forests is pro-environment or pro-business

Evaluate


- Making judgments based on criteria and standards
 - Criteria: Quality, effectiveness, efficiency, and consistency
 - Quantitative (Is this enough?) or qualitative (Is this good enough or of sufficiently quality?)
 Not just a decision of whether 2 objects are
 - similar or different
 - Must have a judgment based on criteria

Evaluate

Checking: Testing for internal inconsistencies or fallacies in an operation oral product

- Testing whether or not a conclusion follows from its premises; whether data support or disconfirm a hypothesis, or whether presented material contains parts that contradict one another
- Students can examine products given to the students or created by students themselves
- Example:
 - Detecting inconsistencies in persuasive messages
 - Watch campaign advertisement and point out any logical flaws in the persuasive message
 Determine if a scientific conclusion follows from the
 - observed data

Create

Pulling elements together to form a

Students make a new product

- Synthesize material into a whole by assembling previously taught material into a organized presentation Student must draw upon elements from many sources and put them together into a novel structure or pattern relative to his or her own prior knowledge
- Student's product is more and different than the student's beginning materials

Create

Create

- Developing a plan for solving the problem Does not involve carrying out the steps to create the actual solution fo a given problem Might establish subgoals or break task into subtasks to be performed when solving the problem when solving the problem Planning is often carried out when students construct a product
- Plan research papers on given historical topics Submit an outline including steps needed to conduct th Design studies to test various hypotheses Plan a way of determining which of the 3 factors deterr of a conduct

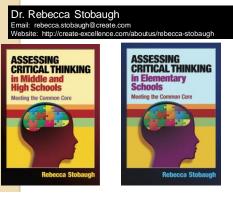
- Assessment: Students turn in worked-out solution, describe solution plans, or select solution plan for a given problem
- Create oducing: Carrying out a plan for solving a given problem that m certain specifications Student given functional description of a goals and must create a product that satisfies the description Must carry out solution plan Example: Producing novel and useful products that meet certain requirements Write papers pertaining to particular historical periods that meet specific standards of scholarship Write a short story that takes place during the American Resolution Design habitats for certain species and certain purposes Design the living quarters of a space station Design the set for a student production of Driving Miss Datsy Always criteria of evaluation student performance relative to the objective

Misconceptions

- Once a higher level thinking question is reviewed the item is a Remembering level for future testing purposes.
- Simply plunking a high level verb like "synthesize" doesn't mean it is automatically a higher level test item.
- "Hard" questions could be on a low thinking level.
 "What is the capital of South Africa?" might be a hard question for some, but this question is on the Remembering level.

Misconceptions

- Classifying tasks is typically based on thinking about the content, not technology or artistic skills.
 - "Designing a PowerPoint on Washington's presidency" is a low level task. Though the use of technology may be on an Applying level, focus on how deeply they are thinking about the CONTENT.
- Students can be taught to think.
- · Thinking is not just reserved for advanced students.


State tests

- If instruction is at a higher level than it is assessed on the state tests, then no doubt students will be able to perform lower level tasks.
 - Always practice harder in class than the test requires; just like in basketball, coaches run multiple drills so basketball players will be well prepared for the game.

Practice HARD

